1037. 케플러 법칙

2022. 10. 20. 21:57수학,과학,공학

케플러의 행성운동법칙

내 아이가 볼 만한

2019-12-19 09:35:33


제1법칙 타원 궤도의 법칙[편집]

케플러의 제1법칙은 궤도의 법칙이라고도 불린다.

  • 행성의 공전 궤도는 타원 모양이다. 태양은 타원의 두 초점 중 하나에 위치한다.

 

 

제2법칙 면적속도 일정의 법칙[편집]

 
 

케플러의 제2법칙은 케플러 넓이 법칙(Kepler's law of areas)이라고도 불린다.

  • 행성과 태양을 연결하는 가상적인 선분이 같은 시간 동안 쓸고 지나가는 면적은 항상 같다.

면적속도는 수학적으로 다음과 같이 정의된다.

케플러의 제2법칙이 행성 운동의 운동 상수임을 의미한다. 혹은, 행성의 공전 속도를 사용하여

가 일정하다고 말하기도 한다. 위 값은 행성의 각운동량에 비례하므로, 이 법칙은 만유인력의 법칙과 관계없이 각운동량 보존 법칙으로부터 유도할 수 있다.

 

 

 

제3법칙 조화의 법칙[편집]

케플러의 제3법칙은 주기의 법칙이라고도 불린다.

  • 행성의 공전 주기의 제곱은 궤도의 긴반지름의 세제곱에 비례한다.

이를 수식으로 나타내면 다음과 같다.

여기서

 : 공전 주기

 : 공전 궤도의 긴반지름

이다. 좀 더 비례 관계를 명확히 하면,

이다. 여기서

 : 중력 상수

 : 초점에 위치한 별의 질량

 : 행성의 질량

이다. 태양계에서 행성은 태양에 비해 훨씬 더 가벼우므로 (

), 다음과 같이 근사할 수 있다.

따라서, 태양을 중심으로 하는 태양계 안의 모든 행성에 대해선 

의 값이 모두 같다.

케플러의 제3법칙은 비리얼 정리의 특수한 경우이다.